李永舫/孟磊团队Nature论文报道了在高效钙钛矿-有机叠层太阳能电池研究方面取得的重要进展
近年来钙钛矿材料在光伏领域的潜力不断被人们发掘,单结钙钛矿太阳能电池效率屡创新高。为进一步提高光电转化效率,研究者进一步制备了一系列基于宽带隙钙钛矿的叠层太阳能电池,比如钙钛矿/硅叠层太阳能电池,钙钛矿/钙钛矿叠层太阳能电池等。相较于其他种类的叠层太阳能电池,钙钛矿/有机叠层太阳能电池作为一种新兴技术而备受关注。在钙钛矿/有机叠层太阳能电池中,采用宽带隙钙钛矿材料作为顶电池吸收短波长太阳光,采用窄带隙有机活性层作为底电池吸收近红外长波长太阳光,大幅拓宽可利用太阳光谱范围并降低能量损失。同时,钙钛矿子电池可以过滤高能量光子以保护有机活性层、防止其光降解;有机子电池可以作为封装层隔绝水氧,提升环境稳定性,同时叠层太阳能电池的中间透明电极层还可以缓解钙钛矿顶电池负极处离子扩散等问题,从而使钙钛矿-有机叠层太阳能电池的稳定性优于单结钙钛矿和单结有机太阳能电池。另外,钙钛矿/有机叠层太阳能电池也保留了可溶液制备太阳能电池的本征优势。
开路电压的提升是提高钙钛矿/有机叠层太阳能电池效率的关键因素。在钙钛矿太阳能电池中,宽带隙钙钛矿吸光层与C60电子传输层界面处经常存在严重的界面复合,表面态诱导的导带费米能级钉扎效应会造成电压损失。为降低界面处的电压损失从而提升太阳能电池效率,钝化宽带隙钙钛矿吸光层与C60电子传输层的界面是一种有效的策略。
在国家自然科学基金委、科技部、中国科学院的支持下,化学所有机固体院重点实验室李永舫/孟磊团队在前期研究的基础上,对钙钛矿/有机叠层太阳电池进行了深入研究。他们研究了具有顺反异构特性的1,4-环己二胺分子对于宽带隙钙钛矿表面的钝化机制(图1a),系统性的揭示了两种顺反异构的钝化剂分子所导致的钙钛矿表面结构差异,最终筛选出拥有优势构型的顺式钝化分子(cis-CyDAI2)。结合理论计算与X射线研究了顺反两种钝化剂分子结构导致的钙钛矿表面结构差异,通过研究不同钝化分子处理的钙钛矿薄膜的光致发光量子产率,提取得到了相应的准费米能级分裂(图1b),发现cis-CyDAI2处理的钙钛矿薄膜有更高的理论开路电压。进一步地,他们通过紫外光电子能谱与表面开尔文力显微镜等测试手段发现,cis-CyDAI2会导致宽带隙钙钛矿表面费米能级上升,削弱表面钉扎效应,与电子传输层有更好的接触。最终在具有1.88 eV带隙的宽带隙钙钛矿单结电池中获得了 1.36 V的开路电压与18.4%的光电转换效率。该策略为宽带隙钙钛矿太阳能电池降低电压损失提供了全新思路。
最终,他们结合窄带隙有机材料底电池构建了钙钛矿/有机叠层太阳能电池(图1c),获得了26.4%的光电转换效率(图1d)(经第三方认证为25.7%),为目前报道的钙钛矿/有机叠层太阳电池的最高效率。相关研究成果近期发表在《自然》上(Nature.2024, DOI:10.1038/s41586-024-08160-y ),文章的共同第一作者为博士生蒋鑫和秦书诚博士,通讯作者为化学所孟磊研究员、李永舫院士和德国波茨坦大学Felix Lang教授。
图1. (a) 钙钛矿钝化剂CyDAI2化学结构 (b) 通过测试不同条件下薄膜的准费米能级分裂和器件的开路电压总结的电压损耗示意图 (c) 钙钛矿-有机叠层太阳能电池结构示意图以及扫描电镜截面图 (d) 太阳能电池的电流密度-电压曲线
有机固体院重点实验室
2024年10月16日
附件下载: